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SUMMARY

A flnlte-element model of a geared rotor system on flexible bearings has

been developed. The model includes the rotary inertia of shaft elements, the

a×lal loading on shafts, flexibillty and damping of bearlngs, material damping

of shafts and the stiffness and the damping of gear mesh. The coupling

between the torsional and transverse vibrations of gears were considered in

the model. A constant mesh stiffness was assumed. The analysis procedure can

be used for forced vibration analysls of geared rotors by calculatlng the

critical speeds and determining the response of any point on the shaft to mass

unbalances, geometric eccentricities of gears and dlsplacement transmission

error excitation at the mesh point. The dynamic mesh forces due to these

excitations can also be calculated. The model has been applied to several

systems for the demonstratlon of its accuracy and for studying the effect of

bearing compliances on system dynamics.

INTRODUCTION

Even though there have been numerous studies on both rotor dynamics and
gear dynamics, the studies on geared rotor dynamics have been rather recent.
The study of the dynamic behavior of geared rotor systems usually requires
that torsional and transverse vibratlon modes be coupled in the model, a
problem not present for studies of for rotors without gears.

For rotor dynamics studies, the flnlte-element method seems to be a

hlghly efficient modeling method. An early finite-element modeling method
(Nelson and McVaugh, 1976) used a Raylelgh beam flnlte-element, which Included

the effects of translational and rotary Inertia, gyroscoplc moments, and axial

load. Zorzl and Nelson (1977) generalized the Nelson and McVaugh study to

include internal damping. Later, Nelson (1980) developed a Tlmoshenko beam by

adding shear deformation to hls earlier work. The Timoshenko model was

extended by Ozguven and Ozkan (1983) to include effects such as transverse and

rotary inertia, gyroscopic moments, axial load, Internal hysteretic, viscous

damping, and shear deformations In a single model. None of these models can

handle geared rotor systems, although they are capable of determining the

dynamic behavior of rotors conslstlng of shafts supported at several points

and carrying rigid disks at several locations.



Gear dynamics studies, on the other hand, have usually neglected the
lateral vibrations of the shafts and bearlngs and have typically represented

the system wlth a torslonal model. Although neglectlng lateral vibrations

might provide a good approxlmatlon For systems having shafts wlth small

compliances, the dynamic coupling between the transverse and torsional

vibrations due to the gear mesh affects the system behavior considerably when

the shafts have high compliances (Mitchell and Mellen, 1975). Thls fact lead

Investlgators to the Include lateral vibrations of the shafts and bearlngs in

thelr models. Lund (1978) included influence coefflclents at each gear mesh

by using the Holzer method for torsional vlbratlons and the Myklestad-Prohl

method for lateral vibrations, thus, obtaining critical speeds and a Forced

vlbratlon response.

Early geared rotor dynamics models concentrated on the effects of mass
imbalance and eccentriclty of the gear on the shaft, virtually neglecting the
actual dynamics of the gear mesh. Hamad and Selreg (1980) studled the
whirling of geared rotor systems supported on hydrodynamic bearings.
Torsional vibrations were not considered In this model and the shaft of the
gear was assumed to be rigid, lida, et al. (1980), who considered the same
problem, by assuming one of the shafts to be rigid and neglecting the
compllance of the gear mesh obtained a three-degree-of-freedom model that
determined the first three vibration modes and the forced vibration response
due to the unbalance and the geometric eccentrlcity of one of the gears. They
also showed that their theoretical results confirmed experimental
measurements. Later, llda, eta|. (1984, 1985, 1986) applied thelr model to a
larger system conslstlng of three shafts coupled by two gear meshes.
Haglwara, llda, and K1kuchl (1981) developed a simple model that included the
transverse flexlbilltles of the shafts by using dlscrete stiffness values that
took the damping and compliances of the Journal bearings into account and that
assumed the mesh stlffness to be constant. With their model they studied the
forced response of geared shafts due to unbalances and runout errors.

Some of the studies used the transfer matrix method to couple the gear

mesh dynamic with system dynamics. Daws (1979) developed a three-dlmenslonal

model that considered mesh stiffness as a tlme-varylng, three-dlmenslonal

tensor. He Included the force coupllng due the Interaction of gear deflection

and tlme varying stiffness, but he neglected the dynamic coupling. As a

continuation of the Daws study, Mitchell and Davld (1985) showed that dynamic

coupling terms dominate the dynamic behavior of the system. Another model in
which the transfer matrix method was used is the model of lwatsubo, Aril, and

Kawai (1984a) In which the forced response due to only mass unbalance was

calculated for a constant mesh stiffness. Later, they (1984b) Included the

effects of periodic variation of mesh stiffness and proflle errors of both

gears.

Other studies used lumped mass and flnite-element methods to couple the
lateral and torsional dynamlcs typical of geared rotor systems. Nerlya, Bhat,
and Sankar (1984) extended the model of llda et aI. (1980) by representing a
single gear by a two-mass, two-sprlng, two-damper system which used a constant
mesh stiffness. The gear shafts were assumed to be massless, and equivalent
values for the lateral and torslona] stiffoesses of shafts were used to obtain
a discrete model. As a continuation of this study, Nerlya, et al. (1985) used
the finite-element method to flnd the dynamlc behavior of geared rotors. They
also found the forced vibratlon response of the system due to mass unbalances
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and runout errors of the gears by uslng modal summation. Bagcl and

Rajavenkateswaran (1987) used a spatlal finite line-element technique to

perform mode shape and frequency analysis of coupled torslonal, flexural, and

longitudinal vibratory systems with special appIicatlon to multlcy]Inder

engines. They concluded that coupled torsional and flexural modal analysis Is

the best procedure to flnd natural frequencies and corresponding mode shapes.

An extensive survey of mathematical models used In gear dynamlcs analyses

is given In a recent paper by Ozguven and Houser (1988a).

The major goal of this study was to develop a finlte-element model for

the dynamic analysis of geared rotor systems and to study the effect of

bearing flex|bIlity, which Is usually neglected In simpler gear dynamics

models, on the dynamics of the system. The formulation of rotor elements,

except for gears, used the rotor dynamlcs program ROT-VIB, which was developed

by Ozguven and Ozkan (1983) and Ozkan (1983). However, because of the

coupllng between torsional and transverse vibration modes, a torsional degree
of freedom has been added to the formulation, and some special features of

ROT-rIB have been omitted.

[C]

Cxx,Cyy

Cm

Cs

dl,d2

E, G

eg,ep

et

Fs

{Ft}

Ig,lp
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Jd,Jm
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km

kxx,kyy

SYMBOL LIST

damping matrix of the system

bearing damping coefficients In the x and y directions, respectlvely

mesh damping coefficient

modal damping value of sth mode

diameters of driving and driven shafts, respectively

modulus of elasticlty and shear modulus, respectlvely

geometric eccentrlcltles of driven and driving gears, respectively

amplitude of the harmonic excitation

average value of force transmitted (static load)

total force vector of the system

mass moment of Inertlas of driven and driving gears, respectively

Imaginary number

mass moment of Inertlas of load and motor, respectlvely

torslonal compliance of the flexible coupllng

mesh stlffness coefficient

bearlng stiffness values



L1 ,L2

mg ,mp

Np

{q}

rg,rp

t

Ug ,Up

xg,xp

Yg ,Yp

el ,82

ep ,eg

[¢]

[¢s]

_p ,ug

_r

lengths of drlvlng and driven shafts, respectively

masses of driven and driving gears, respectively

tooth number of driving gear

total response of the system

base circle radll of driven and driving gears, respectively

tlme

mass unbalances of driven and driving gears, respectively

coordinates perpendicular to the pressure llne at the centers of the

driven and driving gears, respectively

coordlnates In the direction of the pressure line at the centers of

the drlven and driving gears, respectively

total angular rotations of driving and driven gears, respectively

fluctuating parts of e I and 82, respect|vely

modal matrix

sth normalized elgenvector

rotatlonal speeds of driving and driven shafts, respectlvely

rth natural frequency

THEORY

A typical geared rotor system, as shown In figure I, consists of a motor
connected to one of the shafts by a coupling, a load at the other end of the

other shaft, and a gear palr which couples the shafts. Shafts are supported

at several 1ocatlons by bearlngs. Hence, a geared rotor system consists of

the followlng elements: (1) shafts, (2) rigid disks, (3) flexible bearings,

and (4) gears. When two shafts are not coupled, each gear can be modeled as a

rigid dlsk. However, when they are in mesh, these rlg_d disks are connected

by a sprlng-damper element representing the mesh stiffness and damping.

For the formulation of the first three elements listed above, the

exlstlng program ROT-VIB, (Ozguven and Ozkan, 1983) was used. ROT-VIB is a

general-purpose rotor dynamics program that calculates whirl speeds,
corresponding mode shapes, and the unbalance response of shaft, rigld-dlsk,

bearing systems by Includlng the effects of rotary and transverse Inertla,
shear deformatlons, Internal hysteretlc and viscous damping, axial load, and

gyroscopic moments. In ROT-rIB the classlcal IInearlzed model with eight



spring and damping coefficlents Is used for modeling bearings, and finite
elements with four degrees of freedom at each node (excluding axtal motlon and
torsional rotation) are employed for the shaft elements.

In the present analysis the formulation used In ROT-VIB for these

elements was modified. First, In order to avoid nonsymmetric system matrices

which result in a complex elgenvalue problem, the gyroscopic moment effect was

Ignored and internal damping of the shaft was only included In the damping

matrix. Second, the gear mesh causes coupling between the torslonal and

transverse vibrations of the system, which makes It necessary to include the

torsional degree of freedom. Therefore, the mass and stlffness matrices of

the system, which are taken from ROT-VIB, have been expanded In thls study to

include the torsional motion of the shafts. Hence, flve degrees of freedom

have been defined at each node wlth only axial motion being excluded. Thls

motion, which would be Important for helical gears, could easily be Included

In later analyses.

Gear Mesh Formulation

A typical gear mesh can be represented by a palr of rigid disks connected

by a spring and a damper along the pressure llne which is tangent to the base

circles of the gears (fig. 2). In thls model, both mesh stlffness and damping

values are assumed to be constant, and tooth separation Is not considered,

since the gears are assumed to be constant, and heavily loaded. By choosing

the y axis on the pressure llne and the x axls perpendlcular to the pressure

line, the transverse vibrations In the x direction are uncoupled from both the

torslona] vlbratlons and the transverse vibrations in the y direction. For

the system of figure 2, the mesh forces in the y direction can be written as

Wl : Cm(Y p + rp_ l + ep_pCOS 81 - yg - rg_ 2 - eg_g cos e2 - etNp_ p cos(Npel))

+ km(Y p + rpe I + ep sln eI - yg - rge 2 - eg sin e2 - et sln(Npe2)) (I)

W2 : - WI (2)

where W1 and W2 are mesh forces In the _ and yg directions at the
drlvlng and driven gear locations, respectlv y; cm and km are mesh damplng

and mesh stiffness values; eR and e are geometric eccentricities of
drlvlng and driven gears; and rp an_ rg are base circle radll of the

driving and driven gears. The angles e I and e2 are the total angu]ar

rotations of the driving and driven gears, respectively, and are equal to

el : ep + _pt (3)

e2 : eg + _gt (4)

where e and eg are the alternating parts of rotations and uD and _g
are the _pln speeos of the drlving and driven shafts, respectlvely. The

displacement, et, which may be consldered to be a transmlsslon error

excitation, is applled at the mesh point. This displacement is usually taken

to be slnusoidal at the gear mesh frequency but could Include higher harmonics

of this frequency. Ozguven and Houser (1988b) have shown that It Is posslble



to simulate the variable meshstiffness, approximately, by using a constant
meshstiffness wlth a displacement excitation representing loaded static
transmission error. Thus, by choosing et as the amplitude of the loaded

static transmission error, the effect of variable mesh stiffness can be

approxlmately considered In the model.

Mesh forces also cause moments about dynamic centers of the gears which

are equal to

MI = W1(r p + ep cos e I) (5)

M2 = W2(rg + eg cos e2) (6)

Here, the Inltlal angular positions of geometric eccentricities are taken to

be zero. The mesh stiffness and damping matrices and the force vector of the

system due to gear errors and unbalances can be obtained by writing the force
transmitted as the summation of the average transmitted force (static load),

Fs, and a fluctuatlng component, and then neglecting hlgh order terms
followlng the substitution of equations (I) and (2) Into equatlons (5)

and (6). By defining the degrees of freedom of the system at which the

coupling effect appears, as

{ql} " [Yp ep yg eg] T (7)

the additional mesh stiffness matrix whlch causes the coupling effect and

corresponds to {ql} can be obtalned from equations (l), (2), (5), and (6) to

be

[Km] -

km kmr p -km -kmrg

kmr p kmr _ -kmr p -kmrprg

-km -kmr p km kmrg

r2
-kmrg -kmrprg kmrg km g

(8)

Similarly, the mesh damping matrix can be found to be

[C m] =

cm Cmr p -cm -Cmrg

r2 -Cmr p -CmrprgCmr p cm p

-cm -Cmr p cm Cmrg

r2
-Cmrg -Cmrprg Cmrg cm g

(9)

The other degrees of freedom deflned at nodes p and g have not been
Included In the vector {ql} since elements of [Km] and [C m] corresponding to
these degrees of freedom are all zero. For the degrees of freedom expressed as

{q2} : [Yp Xp ep yg Xg eg] T (I0)

6



the force vector due to runout, transmlsslon errors and mass unbalances are
glven by

{F} =

Up_ sln _pt + F1

Up_ cos _pt

-Fsep cos _pt + rpF 1

Ug_ sln _gt - F1

Ug_ cos _gt

Fseg cos Wgt - rgFl

(ll)

where

F1 : Cm(eg_g cos _gt - ep_p cos _pt + etNp_ p cos(Np_pt))

+ km(eg sin _gt - ep sln _pt + et sln(Np_pt))
(12)

Adding the mesh stlffness matrix given by equat|on (8) to the stlffness

matrix of the uncoupled rotor system ylelds the total stlffness matrix of the

system. The natural frequencies _r and the mode shapes {ur} of the system

can be determined by solving the elgenvalue problem by considering the

homogeneous part of the system equation. In the solution, the Sequential
Threshold Jacobl method was used.

Forced Response

The total force vector can be obtained by combining the force vector due

to the mass unbalances of the shafts and the other dlsks and the force vector

due to the mass unbalances of gears and gear errors as given In equation
(ll). Thls vector is the sum of harmonic components wlth three different

frequencies Up, _g, and (Np_p), and has the foIlowlng general form"

{Ft} = {Fsp} sin wpt + {Fop} cos _pt + {Fsg} sin wgt + {Fcg} cos _gt

+ {Fsm} sln(Np_pt) + {Fcm} cos(Np_pt) (13)

The total response of the system to thls excltatlon can be wrltten as

{q} = [_p]{Fsp} sln _pt + [_p]{Fcp} cos _pt + [_g]{Fsg} sin wgt

+ [_g]{Fcg} cos _gt + [_m]{Fsm} sln(Np_pt) + [_m]{Fcm} cos(Npwpt) (14)

where [_p], [mq] and [am] are the receptance matrices corresponding to the

excltlng frequencies, Up, mg, and (Npmp), respectively, and givan by
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n

[CCp] = _ __ _p + iUpC
S=I S

(15)

n T

[=g] = _ -2 _
u Ug + l_gC s

s=l S

(16)

n T

{@s}{¢s} (17)
[am] = 2 N2 2

u s - INpupC ss:l pup +

Here, {¢s} represents the sth mass matrix normalized modal vector, n Is the

total number of the degrees of freedom of the system, I is the unit imaginary
number, and cs Is the stn modal damping value glven by the sth diagonal

element of the transformed damping matrix [_] where

[_] = [¢]T[c][¢] (18)

and where [¢] ts the normallzed modal matrix. In thls approach It Is assumed

that the damplng matrix Is the proportional type, which Is usually not correct

for such systems. When the damping Is not proportional, the transformed

damplng matrix [C] will not be diagonal, In which case cs wlll still be the

st" dlagonal element, and all nonzero, off-dlagonal elements are simply

ignored when using the classical, uncoupled-mode superposltlon method.

Another approach for incIudlng damping in the dynamlc analysis of such systems

would be to assume a modal damplng, _s, for each mode and then replace cs In

equations (14) and (15) by 2_s_ s. However, it Is believed that uslng the

actual values for damping, when they are known, and using an approximate

solution technlque may glve more realistic results than assuming a modal
damping value for each mode.

APPLICATIONS AND NUMERICAL RESULTS

Comparison Wlth An Experlmental Study

=

As the first application, the experlmental setup of Iida et al. (1980)

was modeled (flg. l). The gear system conslsts of two geared rotors" one Is
connected to a motor wlth a mass moment of Inertia of Jm, and the other Is

connected to a load wlth a mass moment of Inertia of Jd. Each shaft Is

supported by a palr of ball bearings. The parameters of the system are listed

in table I. The gears with inertias I_ and I are both mounted on the
middle of the shafts of lengths Ll and L2 an_ diameters dI and d2,

respectively. The driving and driven gears' respective base circle radii are

rp and rq and the)r masses are mp and mq. In thelr study, Ilda et al_
(1980) dld-not specify the length of-the second shaft, L2, and the propertles

of bearings and couplings. Instead, they gave the total torsional stiffness
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values for driving and driven parts of the system and a total transverse
stiffness value for the second shaft. Therefore, we have estimated the length
of the second shaft, L2, and the torslonal stiffness of the first coupling,
Ktc l, in our model so that the total values given by Ilda et al. (1980) were
obtained. The forced vibration response due to a geometric eccentricity eg
and a mass unbalance U is shown In figure 3, along wlth the experimental
results of Ilda et al. _1980). Since no information is given about the

damping values of the system, a modal damping of 0.02 has been used at each

mode In the computations. As seen in flgure 3, predictions from the

analytical model show good correlation with the experimental results.

Response Due to Geometric Eccentricities, Mass Unbalances, Static

Transmlsslon Error and Mesh Stiffness Variation

As a second application, the system used by Nerlya eta]. (1985) was

studied to investigate the effects of geometric eccentricities and mass

unbalances of the gears on the forced response of the system. The natural

frequencies, mode shapes, and the responses at both gear locations due to

geometrlc eccentricities and mass unbalances of gears obtained were almost
identical to those documented by Nerlya. The results of thls analysis have

not been included in this study slnce gear eccentricitles and unbalances

excite the system at the shaft rotatlona] frequencles as was shown in the

first example. The contribution of such low-frequency excitations on the

generated gear noise Is usually negllglble when compared with that of
high-frequency exc|tations caused by transmlsslon errors and mesh stlffness

variations.

On the other hand, the system shown in figure 4 has been modeled to
obtain the dynamic mesh force due to a harmonic dlsplacement excitatlon of
amplltude e t and frequency (Np_p) representing the mesh stiffness
variation. Dlmenslons of the rotbrs shown given in flgure 4 and other system
parameters are listed in table II. The bearings are assumed to be Identlcal,
and geometric eccentrlc|tles and mass unbalances for gears are assumed to be
zero, so that the only excitation causing a forced response is the harmonic
displacement excltatlon deflned. Slnce the dlsplacement Input approximates
the loaded static transmission error, the value of et was taken as the
amplitude of the loaded static transmlss|on error. Figure 5 shows the
varlatlon w_th rotatlonal speed of the rat|o of dynamic to static mesh load
for three dlfferent bearing compllances. The first two small peaks of
flgure 5 correspond to torsional modes of shafts, and the thlrd peak
corresponds to the coupled lateral/torslonal mode governed by the gear mesh.

As shown in figure 5, when the bearing stlffnesses are decreased, the

dynamlc force also decreases conslderably because of a resultlng decrease in

the relative angular rotatlons of the two gears. Although the displacements

in the y direction increase slightly, they do not appreciably affect the

dynamic force. In this example, a mesh damplng corresponding to a modal

damping of 0.1 in the mode of gear mesh has been used. Thls was the value

used by several Investlgators for the same problem.



The Effect of Bearing Compliances on Gear Dynamics

A parametric study of the system shown In figure 6 was performed. The

effects of bearing compliances on the natural frequencies and the forced

response of the system to the harmonic excitation representing the static

transmlsslon error and the mesh stiffness variation were studied. The system

parameters are given In table Ill. The natural frequencies and the physical

descriptions of th_ corresponding modes for a value of bearing stlffnesses

kxx = kvv = l.Ox10 _ N/m are presented In table IV. The forced response at the
pinion l_catlon In both the transverse (pressure line) and rotational

directions, and dynamic mesh forces are plotted In figures 7 to 9. Figures 7

and 8 show that the system has peak responses only at two natural frequencies
In the range analyzed. Mode shapes corresponding to these two natural

frequencies are presented in figure 10. When the free vibration

characterlstIcs of these two modes Is Investigated In detail, It Is seen that

the dynamic coupling between the transverse and torsional vibrations at these

two modes are dominant. It Is also seen that dynamic loads are hlgh at only
the second one of these two modes as shown in figure 9. The reason for thls
is that the transverse and torsional vibrations for the second mode considered

apply at the same dlrectlon at the mesh point. This results in large relatlve

deflections at the mesh polnt which Implies that thls mode is governed by gear

mesh. It Is also seen from these figures that 1owerlng the values of bearing

stlffnesses causes a decrease In both the values of the natural frequencles

and the amplltudes of the peak responses and dynamlc loads.

Figure II shows the varlatlon of these natural frequencies wlth bearing

stiffnesses for three shaft compliances: (1) long shafts (low stiffness) wlth

dimensions given In figure 6, (2) moderately compliant shafts wlth half the

length of the long shafts, (3) very short (stiff) shafts. The shaft and the

bearings supporting the gears can be thought of as two springs connected In

series. When one of these components Is very stiff compared with the other,

its effect on the overall dynamic behavior becomes negligible. When the mode

shapes for these two modes are examined for the case of short shafts and stiff

bearings, the first of these two modes becomes purely torsional, while the

lateral vibrations become more Important In the second mode. As shown In

figure ll(a), since the mode consldered becomes purely torsional In the case

of short shafts and stiff bearings, the value of this natural frequency does

not change as bearing stiffnesses exceed a limiting value. For the other mode

considered, the natural frequency becomes very hlgh when a short bearing Is
used wlth a very stiff bearing, since the lateral vibrations are more dominant

than torsional vibrations in thls mode (fig. ll(b)). Similarly, when the

shafts are Flexible enough, the effect of bearing stlffnesses on the natural

frequency becomes negllglble above a limiting value of bearing stiffness.

CONCLUSION

A flnite-element model was developed to Investigate the dynamic behavlor

of geared rotor systems. In the analysis, transverse and torslonaI vibrations

of the shafts and the transverse vibrations of the bearings have been

consldered. Effects such as transverse and rotary Inertia an axial load, were

included In the model, and Internal damping of the shafts was Included only In

the damping matrix. The gear mesh was modeled by a palr of rigid disks

connected by a spring and a damper wlth constant values that represent average
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mesh values. Tooth separatlon was not considered. The model developed finds

the natural Frequencies, corresponding mode shapes, and Forced response of the

system to mass unbalances and to the geometric eccentrlcitles of gears and
transmission error excitations. Although a constant mesh stlffness was

assumed, the self-excitatlon effect of a real gear mesh was included In the

analysis by using a dlsplacement excitation representing the static
transmlsslon error.

Although It may be Justlfled to solve nonllnear equatlons In simpler
models, for ]arge models such as the ones used In thls study, avoiding

nonllnearltles and transient solutions saves considerable computation tlme.

In the example problems only the first harmonic of the static transmission

error was considered and good predictions were obtained.

Finally, it has been shown that the bearing compliances can greatly

affect the dynamics of geared systems. Decreasing the stlffness values of
bearings beyond a certain value lowers the natural frequency governed by the

gear mesh considerably. However, In the case of compliant shafts, when the
bearing stlffnesses are above a certain value, the natural frequency

corresponding to the gear mesh does not change conslderably by increasing
bearlng stiffnesses. On the other hand, It has been seen that the amplltudes

of dynamic to static load ratio and the deflectlons at the torslonal and

transverse directions are decreased by using bearings with higher compllances,

which shows that the bearing compliance may also affect the dynamic tooth

load, dependlng upon the relatlve compliances of the other elements In the
system.
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TABLE I. - PARAMETERS OF THE GEAR SYSTEM OF FIGURE I

Moments of inertia:

Of motor, 3m, kg.m 2 ....................... 0.459

Of load, Jd, kg "m2 ....................... 0.549

Of driven gears, Ig, kg.m 2 ................ 6.28.×10 -3

Of driven gears, Ip, kg.m 2 ................... 0.030

Mass:

Of driven gears, mg, kg ..................... 5.65

Of driving gears, mp, kg .................... 16.96

Basic circle radius:

Of driven gears, rg, m .................... 0.1015

Of driving gears rp, m .................... 0.0564

Length:

Of driven shaft, L2, m .................... 0.40

Of driving shaft, L], m .................... 0.78

Diameter:

Of driven shaft, d2, m ..................... 0.02

Of driving shaft, d I, m ..................... 0.03

Geometric eccentricity of driven gears, eg, m ......... 1.2x10 -5

Mass unbalance of driven gear, Ug, kg.m ............ 2.8x10 -4

Torsional compliance, Ktc l, N.m/rad ................ 115.0

Mesh stiffness coefficient, km, N/m ............... 2.0×108
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TABLE II. - PARAMETERS OF THE GEAR SYSTEM OF FIGURE 4

[Variable hearing stiffness of values.]

Moment of inertia:

Of motor, Jm, kg "m2 .....................

Of load, Jd, kg "m2 .....................

Of driven gears, Ig, kg.m 2 .................

Of driven gears Ip, kg.m 2 ..................

Mass:

1.15xlO -2

5.75xl0 -3

1.15xlO -3

1.15xlO -3

Of motor, mm, kg ......................... 9.2

Of load, md, kg .......................... 4.6

Of driven gears, mg, kg ...................... 0.92

Of driven gears, mp kg

Basic circle radius:

Of driven gears, rg, m

Of driving gears, rp, m

...................... 0.92

..................... 0.047

..................... 0.047

Mesh stiffness coefficient, km, N/M ............... 2.0xi08

Average values of force transmitted, Fs, N ............. 2500
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TABLE Ill. - PARAMETERS OF THE GEAR SYSTEM OF FIGURE 6

[Variable bearing stiffness values.]

Moment of inertia:

Of driven gears, Ig, kg.m 2

Of driving gears, Ip, kg.m 2

Mass:

Of driven gears, mg, kg .................... 1.84

Of driving gears, mp, kg .................... 1.84

Base circle radius:

Of driven gears, rg, m .................... 0.0445

Of driving gears, rp, m ................... 0.0445

Amplitude of the harmonic excitation, et, m .......... 9.3xi0 -6

Mesh stiffness coefficient, km, N/m .............. 1.0x108

Tooth numbers of driving gear, Np .................. 28

.................. 0.0018

.................. 0.0018

TABLE IV. - FIRST 14 NATURAL FREQUENCIES OF THE SYSTEM OF

FIGURE 6 FOR THE CASE OF kxx/k m = I0

Natural frequency,
Hz

0

581

687

689

691

2524

3387

3387

3421

3421

6447

6539

6831

6840

Corresponding mode

T,.

Torsional rigid body

Transverse, torsional

Transverse, x dir., driving shaft

Transverse, y dir.

Transverse, x dir., driven shaft

Transverse, torsional

Transverse, y dir.

Transverse, x dir., driving shaft

Transverse, x dir., driven shaft

Transverse, y dir.

Torsional, driving shaft

Torsional, driven shaft

Transverse, x dir., driving shaft

Transverse, y dir.
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